2024

Biomedizinische Informatik

✤ Teaching offers 2024

Contents

1.	Vorbemerkung/Preliminary remarks	2
2.	Wahlblöcke	2
	2.1. AI Ethics in Medicine	2
	2.1.1. Ethical aspects of Medical AI applications	2
	2.2. Medical Informatics Technologies	3
	2.2.1. Deep Learning Basics	3
	2.2.2. Medical Image processing	3
	2.2.3. Machine Learning and Trust in Medical Applications: Determining the tradeoffs	4
	2.2.4. Data Analytics with Python for Medical Doctors	4
	2.2.5. Coding Basics in Python	4
	2.2.6. Biomedical semantics for advanced search technologies	5
	2.2.7. Introduction to Medical Data Science (DDM1)	5
	Introduction to Medical Data Science (DDM1)	5
	2.2.8. Teaching machines how to make a decision: Supervised Machine Learning (DDM2)	5
	Teaching machines how to make a decision: Supervised Machine Learning (DDM2)	5
	2.2.9. How machines can self learn: Unsupervised Machine Learning (DDM3)	6
	How machines can self learn: Unsupervised Machine Learning (DDM3)	6
	2.2.10. Diagnosing AI algorithms: Visualisation and Evaluation (DDM4)	6
	Diagnosing AI algorithms: Visualisation and Evaluation (DDM4)	6
3. :	Seminars	7
	3.1. Medical Data Science	7
	3.1.1. Advances in Biomedical Informatics Research: Graduate Students Colloquium	7
	3.1.2. Medical Data Science Colloquium	7
	3.2. AI Ethics in Medicine	7
	3.2.1. Paradigm shifts in medical reasoning: Revisiting basics of the Scientific Methodology in Clinical Medicine	7
	3.2.2. Paradigm shifts in medical reasoning: Human vs Machine thinking	8
	3.2.3. Paradigm shifts in medical reasoning: Reproducibility	8
	3.3. Medical Informatics Technologies	8
	3.3.1. Semantic Interoperability in Health: Data management and Interoperability	8
	3.3.2. Semantic Interoperability in Health: Data Stewardship	9
	3.3.3. Semantic Interoperability in Health: Experience session - Medical interopera	9
	3.3.4. Semantic Interoperability in Health: Experience session – Visualisation	10
	3.4. Innovation and Entrepreneurship	10
	3.4.1. MedTechs: Medical Technology-based entrepreneurship and innovation	10

4.	Wissenschaftliche Projekte für Studierende der Vorklinik	.11
	4.1. Wissenschaftliches Projekt im Rahmen einer Literaturrecherche mit	.11
	begleitendem Seminar	.11
	4.2. Wissenschaftliches Projekt im Rahmen eines Programmierpraktikums	.11
	mit begleitendem Seminar	.11
5.	Courses offered jointly with other Faculties	.11
	5.1. Innovation and Entrepreneurship	.11
	5.1.1. Innovation Ecosystems in Health and Medical Technologies	.11

1. Vorbemerkung/Preliminary remarks

Dieses Dokument gibt einen inhaltlichen Überblick über die Lehrangebote unseres Instituts. Bis auf die wissenschaftlichen Projekte der Vorklinik sind unsere Kurse auch für ärztliches Personal der Uniklinik Köln und Mitarbeitende aus der Forschung an der Universität zu Köln geöffnet. Die Termine und Uhrzeiten der Veranstaltungen sind in KLIPS zu finden. Falls Sie keinen KLIPS-Zugang haben oder unsere Angebote nicht einsehen können, schreiben Sie bitte eine Mail an <u>BI-K-INFORM@uk-koeln.de</u>.

Auch bei weiteren inhaltlichen oder formalen Fragen können Sie sich gerne an <u>BI-K-INFORM@uk-koeln.de</u> wenden.

This document provides an overview of the courses offered by our institute. With the exception of the preclinical scientific projects, our courses are also open to medical staff at the University Hospital of Cologne and research staff at the University of Cologne. The dates and times of the courses can be found in KLIPS. If you do not have KLIPS access or are unable to view our programmes, please send an email to <u>BI-K-INFORM@uk-koeln.de</u>.

You are also welcome to contact <u>BI-K-INFORM@uk-koeln.de</u> if you have any further questions regarding content or form.

2. Wahlblöcke

2.1. AI Ethics in Medicine

2.1.1. Ethical aspects of Medical AI applications

Titel	Ethical aspects of Medical AI applications
Description	This course offers an insightful overview into the ethical considerations of
	using Artificial Intelligence in healthcare, requiring no prior knowledge of

AI. It covers an introduction to AI, its medical uses, and delves into critical ethical issues as outlined by the WHO, including the justification of AI use, data privacy, risks to safety and cybersecurity, bias, accountability, and the impact on labor and commercialization in healthcare. Through real-world examples and comprehensive references, the course prepares participants to critically evaluate and navigate the ethical landscape of medical AI technologies.

2.2. Medical Informatics Technologies

2.2.1. Deep Learning Basics

Titel	Deep Learning Basics
Description	This course offers an introduction to deep learning, covering neural
	networks, backpropagation, and optimization techniques, progressing to
	CNNs and RNNs with TensorFlow and PyTorch implementations. It
	addresses training practices, model evaluation, and hyperparameter tuning.
	No prior Python or data science knowledge is required, preparing students
	for advanced topics such as medical imaging processing.

2.2.2. Medical Image processing

Titel	Medical Image processing
Description	This course explores imaging technologies (x-ray, CT, MRI) and their
	integration with AI to improve image interpretation and evaluation. It
	focuses on machine learning, especially deep neural networks, for image
	analysis tasks like classification and segmentation. Participants learn about
	neural network architectures (CNNs, U-Net) through hands-on coding, and
	assess deep learning performance in medical imaging.

Titel	Machine Learning and Trust in Medical Applications: Determining the tradeoffs
Description	This seminar examines the shift from traditional statistics to machine
	learning in medicine, highlighting the balance between AI expectations and
	healthcare realities. It discusses the move to using large datasets for
	improved ML model accuracy and efficiency, while stressing that AI is not a
	one-size-fits-all solution. The importance of knowing when and why ML
	works or doesn't is emphasized, addressing misconceptions about AI's
	complexity. The goal is to promote a nuanced understanding of AI's
	application in healthcare to reduce risks of misuse.

2.2.3. Machine Learning and Trust in Medical Applications: Determining the tradeoffs

2.2.4. Data Analytics with Python for Medical Doctors

Titel	Data Analytics with Python for Medical Doctors
Description	This course introduces medical professionals to data analysis with Python,
	covering exploratory techniques, pattern identification, and outlier detection
	using tools like NumPy, Pandas, and Matplotlib. Participants will learn to
	process, analyze, and visualize medical data, including basic statistical
	methods and data normalization, to effectively interpret healthcare
	information.

2.2.5. Coding Basics in Python

Titel	Coding Basics in Python
Description	This introductory course for medical students and residents with no
	programming background focuses on Python concepts applicable to medical
	research and software development. Through interactive seminars and
	coding assignments, it builds foundational programming skills and serves as
	a primer for advanced medical informatics topics. Offered by the Institute
	for Biomedical Informatics at Uniklinik Köln, participants can earn a

completion certificate, preparing them to apply coding in their medical
careers.

2.2.6. Biomedical semantics for advanced search technologies

Titel	Biomedical semantics for advanced search technologies
Description	This seminar provides an introduction to Semantic Web technologies,
	Linked Data, and Knowledge Discovery, focusing on their application in
	biomedicine. It is designed for beginners and covers how semantic
	enhancement of data facilitates information retrieval and knowledge
	discovery. Participants will learn the use of semantics in life sciences IT
	solutions through examples like controlled vocabularies and ontologies. The
	hands-on approach aims to enhance understanding of terminology use in
	data analysis and its impact on AI and machine learning advancements in
	healthcare.

2.2.7. Introduction to Medical Data Science (DDM1)

Titel	Introduction to Medical Data Science (DDM1) (nur im Wi/Se)
Description	This course aims to introduce medical students to the basics of data science,
	aspects of data reusability and how best to prepare data for data mining.
	The first session will be a 180-minutes online session which starts with a
	90-minutes lecture providing practical information on how Biomedical Data
	can be preprocessed in order to prepare data mining processes, i.e. to make
	the data (re-)usable for Data Driven Medicine (DDM). This first session will
	finish with an optional but recommended 90-minute introduction to the
	programming language python. This introduction is the same for all DDM
	courses.

2.2.8. Teaching machines how to make a decision: Supervised Machine Learning (DDM2)

Titel	Teaching machines how to make a decision: Supervised Machine Learning (DDM2) (nur im Wi/Se)
-------	--

Description	This course provides both theoretical and practical information on how
	knowledge can be generated from Biomedical Data using Supervised
	Machine Learning (ML) methods in the field of Data Driven Medicine
	(DDM).
	The first session will be a 180-minutes online session which starts with a
	90-minutes lecture on Supervised ML approaches. This first session will
	finish with an optional but recommended 90-minute introduction to the
	programming language python.

2.2.9. How machines can self learn: Unsupervised Machine Learning (DDM3)

Titel	How machines can self learn: Unsupervised Machine Learning (DDM3) (nur im Wi/Se)
Description	This course provides both theoretical and practical information on how
	knowledge can be generated from Biomedical Data using Unsupervised
	Machine Learning (ML) methods in the field of Data Driven Medicine
	(DDM). The first session will be a 180-minutes online session which starts
	with a 90-minutes lecture on Unsupervised ML approaches. This first
	session will finish with an optional but recommended 90-minute
	introduction to the programming language python.

2.2.10. Diagnosing AI algorithms: Visualisation and Evaluation (DDM4)

Titel	Diagnosing AI algorithms: Visualisation and Evaluation (DDM4) (nur im Wi/Se)
Description	In two sessions this course theoretically and practically shows how the
	results of data mining in the field of Data Driven Medicine (DDM) can be
	evaluated and visualised. The first session will be a 180-minutes online
	session which starts with a 90-minutes lecture on evaluation approaches and
	visualisation techniques. This first session will finish with an optional but
	recommended 90-minute introduction to the programming language python.

3. Seminars

3.1. Medical Data Science

3.1.1. Advances in Biomedical Informatics Research: Graduate Students Colloquium

Titel	Advances in Biomedical Informatics Research: Graduate Students Colloquium
Description	This seminar caters to master's and doctoral students, researchers, and
	scientific staff in the field of medical informatics. Open also to participants
	from associated clinics and research bodies, it offers a venue for presenting
	research progress or reviewing academic articles. This initiative aims to
	foster academic growth, encourage the exchange of ideas, and enhance
	collaboration within the biomedical informatics and medical data science
	community.

3.1.2. Medical Data Science Colloquium

ersities discuss-
light innovative
future collabora-
1

3.2. AI Ethics in Medicine

3.2.1. Paradigm shifts in medical reasoning: Revisiting basics of the Scientific Methodology in Clinical Medicine

Titel	Paradigm shifts in medical reasoning: Revisiting basics of the Scientific
	Methodology in Clinical Medicine
Description	This course offers a fresh look at A.R. Feinstein's seminal 1964 work on
	'Scientific Methodology in Clinical Medicine,' which significantly
	influenced clinical epidemiology. Students will explore the historical
	foundations of clinical medicine methodology through Feinstein's papers,

examining principles, disease classification, therapeutic response evaluation,
and clinical data acquisition. The course also connects these concepts to the
contemporary advancements in machine learning and artificial intelligence,
providing a bridge between past methodologies and future technologies in
medicine.

3.2.2. Paradigm shifts in medical reasoning: Human vs Machine thinking

Titel	Paradigm shifts in medical reasoning: Human vs Machine thinking
Description	This course examines the impact of AI and Machine Learning on traditional
	medical reasoning and decision-making. It explores the shift towards
	personalized and data-driven medicine, challenging established medical
	paradigms with specific examples. This course aims to highlight the
	evolving interplay between human and machine thinking in the medical
	field, fostering a critical understanding of how technology is reshaping
	healthcare practices.

3.2.3. Paradigm shifts in medical reasoning: Reproducibility

	Paradigm snifts in medical reasoning: Reproducibility
Description	This seminar delves into the critical role of reproducibility in scientific re-
	search, guided by Prof. Gundersen's studies on its various aspects within the
	scientific method. By examining outcomes, analysis, and interpretations of
	experiments through medical examples, students learn to appreciate and ap-
	ply reproducibility principles in medical practice, fostering a deeper under-
	standing of its significance in ensuring reliable and valid scientific inquiry.
	search, guided by Prof. Gundersen's studies on its various aspects within the scientific method. By examining outcomes, analysis, and interpretations of experiments through medical examples, students learn to appreciate and ap ply reproducibility principles in medical practice, fostering a deeper under standing of its significance in ensuring reliable and valid scientific inquiry

3.3. Medical Informatics Technologies

3.3.1. Semantic Interoperability in Health: Data management and Interoperability

Titel	Semantic Interoperability in Health: Data management and
	Interoperability

Description	This module offers an introduction to the key concepts of interoperability
	and semantics in healthcare data, emphasizing the FAIR Data principles for
	improving data management. It addresses the necessity for automation in
	handling the increasing data complexity and variety, focusing on
	interoperability. The course covers topics like conceptual models and
	ontologies applied to medical cases and includes a practical session on
	FHIR (Fast Healthcare Interoperability Resources) to illustrate its
	significance in medical data exchange. This introductory module aims to
	prepare students for effectively dealing with interoperability challenges in
	healthcare data.
1	

3.3.2. Semantic Interoperability in Health: Data Stewardship

Titel	Semantic Interoperability in Health: Data Stewardship
Description	This session offers an in-depth look at managing healthcare data effectively,
	emphasizing data stewardship's principles and practices. It covers the
	essentials of handling medical data, including data quality, privacy, security,
	and compliance, alongside practical insights into data interoperability.
	Through interactive discussions and a demo on data provisioning,
	participants will deepen their understanding of how to safeguard and
	optimize healthcare data for better decision-making and patient care.

3.3.3. Semantic Interoperability in Health: Experience session - Medical interopera

Titel	Semantic Interoperability in Health: Experience session - Medical
	interopera
Description	This course is dedicated to exploring HL7 FHIR, the standard for healthcare
	data exchange. This session offers insights into FHIR's structure, how it
	facilitates secure patient data sharing, and its impact on healthcare. Through
	discussions, demos, and hands-on exercises, participants will learn about
	FHIR resources, data types, and profiles, gaining practical skills in data

exchange and search functionalities. Tools like VS Code and API platforms
such as Postman or Insomnia are recommended for practice, highlighting
FHIR's role in enhancing clinical workflows and decision-making.

3.3.4. Semantic Interoperability in Health: Experience session – Visualisation

Titel	Semantic Interoperability in Health: Experience session – Visualisation
Description	The "Semantic Interoperability in Health: Experience Session -
	Visualization Part 4" emphasizes the importance of data analysis and
	visualization in making complex information accessible. It offers
	foundational training in data visualization techniques over two 45-minute
	sessions, targeting both beginners and intermediate learners. Participants
	will learn how to transform complex data into clear visuals and develop
	skills for effectively presenting data insights. The goal is to enhance
	decision-making and communication abilities using standard data
	visualization methods.

3.4. Innovation and Entrepreneurship

3.4.1. MedTechs: Medical Technology-based entrepreneurship and innovation

Titel	MedTechs: Medical Technology-based entrepreneurship and
	innovation
Description	This course offers experiential learning on starting and growing MedTech
	startups. It teaches students about the challenges and opportunities in the
	MedTech sector, including case study exploration and strategy
	development. With support for group and individual projects, the course
	provides practical experience in launching MedTech ventures and turning
	ideas into viable business opportunities, preparing students for
	entrepreneurial success in the medical technology field.

4. Wissenschaftliche Projekte f
ür Studierende der Vorklinik4.1. Wissenschaftliches Projekt im Rahmen einer Literaturrecherche mit begleitendem Seminar

Titel	Wissenschaftliches Projekt im Rahmen einer Literaturrecherche mit
	begleitendem Seminar (nur im SoSe)
Description	The course involves conducting a literature search with a specific focus on
	the field of Medical Informatics/Data Analysis. During the period of this
	project, a voluntary weekly seminar or a set consultation time at the
	institute is offered to support participants.

4.2. Wissenschaftliches Projekt im Rahmen eines Programmierpraktikums mit begleitendem Seminar

Titel	Wissenschaftliches Projekt im Rahmen eines Programmierpraktikums mit begleitendem Seminar (nur im SoSe)
Description	In this course, students tackle a project focused on medical data analysis.
	They begin with an introductory seminar to learn basic Python skills.
	Following this, they are assigned a specific task to complete within six
	weeks. An optional weekly seminar is available for addressing any
	questions. The course concludes with the students presenting their findings
	in a lecture and simultaneously preparing a project report according to the
	Dean's office guidelines.

5. Courses offered jointly with other Faculties

5.1. Innovation and Entrepreneurship

5.1.1. Innovation Ecosystems in Health and Medical Technologies

Titel	Innovation Ecosystems in Health and Medical Technologies

older
es
ope
smart
1